Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(12): 113553, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38096052

ABSTRACT

The receptor-binding domain (RBD) of influenza virus hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies. Here, we evaluate the ability of several immunofocusing techniques to enhance the functional breadth of vaccine-elicited immune responses against the HA RBD. We present a series of "trihead" nanoparticle immunogens that display native-like closed trimeric RBDs from the HAs of several H1N1 influenza viruses. The series includes hyperglycosylated and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the receptor-binding site periphery. Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicit higher hemagglutination inhibition (HAI) and neutralizing activity than the corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation. By contrast, mosaic nanoparticle display and antigen hypervariation do not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Our results yield important insights into antibody responses against the RBD and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Humans , Hemagglutinins , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Antibodies, Neutralizing
2.
Nat Commun ; 14(1): 5660, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704610

ABSTRACT

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between homologous αvß6 and αvß8 and other RGD integrins, stabilize specific conformational states, and have high thermal stability could have considerable therapeutic utility. Existing small molecule and antibody inhibitors do not have all these properties, and hence new approaches are needed. Here we describe a generalized method for computationally designing RGD-containing miniproteins selective for a single RGD integrin heterodimer and conformational state. We design hyperstable, selective αvß6 and αvß8 inhibitors that bind with picomolar affinity. CryoEM structures of the designed inhibitor-integrin complexes are very close to the computational design models, and show that the inhibitors stabilize specific conformational states of the αvß6 and the αvß8 integrins. In a lung fibrosis mouse model, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.


Subject(s)
Integrins , Pulmonary Fibrosis , Animals , Mice , Cell Membrane , Cryoelectron Microscopy , Disease Models, Animal
3.
bioRxiv ; 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37398153

ABSTRACT

The RGD (Arg-Gly-Asp)-binding integrins αvß6 and αvß8 are clinically validated cancer and fibrosis targets of considerable therapeutic importance. Compounds that can discriminate between the two closely related integrin proteins and other RGD integrins, stabilize specific conformational states, and have sufficient stability enabling tissue restricted administration could have considerable therapeutic utility. Existing small molecules and antibody inhibitors do not have all of these properties, and hence there is a need for new approaches. Here we describe a method for computationally designing hyperstable RGD-containing miniproteins that are highly selective for a single RGD integrin heterodimer and conformational state, and use this strategy to design inhibitors of αvß6 and αvß8 with high selectivity. The αvß6 and αvß8 inhibitors have picomolar affinities for their targets, and >1000-fold selectivity over other RGD integrins. CryoEM structures are within 0.6-0.7Å root-mean-square deviation (RMSD) to the computational design models; the designed αvß6 inhibitor and native ligand stabilize the open conformation in contrast to the therapeutic anti-αvß6 antibody BG00011 that stabilizes the bent-closed conformation and caused on-target toxicity in patients with lung fibrosis, and the αvß8 inhibitor maintains the constitutively fixed extended-closed αvß8 conformation. In a mouse model of bleomycin-induced lung fibrosis, the αvß6 inhibitor potently reduced fibrotic burden and improved overall lung mechanics when delivered via oropharyngeal administration mimicking inhalation, demonstrating the therapeutic potential of de novo designed integrin binding proteins with high selectivity.

4.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292967

ABSTRACT

The head domain of influenza hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies during infection and vaccination. Here we evaluated a series of immunogens that combined several immunofocusing techniques for their ability to enhance the functional breadth of vaccine-elicited immune responses. We designed a series of "trihead" nanoparticle immunogens that display native-like closed trimeric heads from the HAs of several H1N1 influenza viruses, including hyperglycosylated variants and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the periphery of the receptor binding site (RBS). Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicited higher HAI and neutralizing activity against vaccine-matched and -mismatched H1 viruses than corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation, indicating that both of these engineering strategies contributed to improved immunogenicity. By contrast, mosaic nanoparticle display and antigen hypervariation did not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Serum competition assays and electron microscopy polyclonal epitope mapping revealed that the trihead immunogens, especially when hyperglycosylated, elicited a high proportion of antibodies targeting the RBS, as well as cross-reactive antibodies targeting a conserved epitope on the side of the head. Our results yield important insights into antibody responses against the HA head and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.

5.
Cell Rep Med ; 3(10): 100780, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36206752

ABSTRACT

Protein nanoparticle scaffolds are increasingly used in next-generation vaccine designs, and several have established records of clinical safety and efficacy. Yet the rules for how immune responses specific to nanoparticle scaffolds affect the immunogenicity of displayed antigens have not been established. Here we define relationships between anti-scaffold and antigen-specific antibody responses elicited by protein nanoparticle immunogens. We report that dampening anti-scaffold responses by physical masking does not enhance antigen-specific antibody responses. In a series of immunogens that all use the same nanoparticle scaffold but display four different antigens, only HIV-1 envelope glycoprotein (Env) is subdominant to the scaffold. However, we also demonstrate that scaffold-specific antibody responses can competitively inhibit antigen-specific responses when the scaffold is provided in excess. Overall, our results suggest that anti-scaffold antibody responses are unlikely to suppress antigen-specific antibody responses for protein nanoparticle immunogens in which the antigen is immunodominant over the scaffold.


Subject(s)
HIV-1 , Nanoparticles , Vaccines , HIV Antibodies , Antibody Formation , Glycoproteins
6.
Cell Rep ; 40(9): 111299, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35988541

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has led to the development of a large number of vaccines, several of which are now approved for use in humans. Understanding vaccine-elicited antibody responses against emerging SARS-CoV-2 variants of concern (VOCs) in real time is key to inform public health policies. Serum neutralizing antibody titers are the current best correlate of protection from SARS-CoV-2 challenge in non-human primates and a key metric to understand immune evasion of VOCs. We report that vaccinated BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses elicited by various vaccine platforms against VOCs, compared with non-human primates or humans, suggesting caution should be exercised when interpreting data obtained with this animal model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977542

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Blocking , Antibodies, Monoclonal , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Humans , Malaria, Falciparum/prevention & control , Membrane Glycoproteins , Mice , Plasmodium falciparum , Protozoan Proteins , Vaccination
8.
Nat Biotechnol ; 40(9): 1336-1340, 2022 09.
Article in English | MEDLINE | ID: mdl-35484405

ABSTRACT

We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Neutralizing/chemistry , Antibodies, Viral/genetics , COVID-19/diagnosis , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
9.
Cell Rep ; 38(2): 110217, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021101

ABSTRACT

Nanoparticle (NP) vaccine formulations promote immune responses through multiple mechanisms. We recently reported that mannose-binding lectin (MBL) triggers trafficking of glycosylated HIV Env-immunogen NPs to lymph node follicles. Here, we investigate effects of MBL and complement on NP forms of HIV and other viral antigens. MBL recognition of oligomannose on gp120 nanoparticles significantly increases antigen accumulation in lymph nodes and antigen-specific germinal center (GC) responses. MBL and complement also mediate follicular trafficking and enhance GC responses to influenza, HBV, and HPV particulate antigens. Using model protein nanoparticles bearing titrated levels of glycosylation, we determine that mannose patches at a minimal density of 2.1 × 10-3 mannose patches/nm2 are required to trigger follicular targeting, which increases with increasing glycan density up to at least ∼8.2 × 10-3 patches/nm2. Thus, innate immune recognition of glycans has a significant impact on humoral immunity, and these findings provide a framework for engineering glycan recognition to optimize vaccine efficacy.


Subject(s)
Drug Delivery Systems/methods , HIV-1/immunology , Mannose-Binding Lectin/immunology , Animals , Antigens/metabolism , Antigens, Viral/immunology , Complement System Proteins/metabolism , Female , Germinal Center/metabolism , Glycosylation , HIV-1/drug effects , Humans , Immunity, Humoral/immunology , Male , Mannose , Mice , Mice, Inbred C57BL , Nanoparticle Drug Delivery System/pharmacology , Nanoparticles , Polysaccharides/metabolism
10.
Front Immunol ; 12: 710263, 2021.
Article in English | MEDLINE | ID: mdl-34267764

ABSTRACT

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Schedule , Immunogenicity, Vaccine , Mutation , Protein Domains/genetics , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Linoleic Acids , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Treatment Outcome , Vero Cells
11.
bioRxiv ; 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34189528

ABSTRACT

With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.

12.
Nature ; 594(7862): 253-258, 2021 06.
Article in English | MEDLINE | ID: mdl-33873199

ABSTRACT

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Subject(s)
Adjuvants, Immunologic , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Alum Compounds , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Male , Oligodeoxyribonucleotides , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Squalene
13.
bioRxiv ; 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33594366

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

14.
Cell ; 183(5): 1367-1382.e17, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33160446

ABSTRACT

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccination , Adolescent , Adult , Aged , Animals , COVID-19/virology , Chlorocebus aethiops , Cohort Studies , Epitopes/immunology , Female , HEK293 Cells , Humans , Macaca nemestrina , Male , Mice, Inbred BALB C , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
15.
bioRxiv ; 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32817941

ABSTRACT

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.

16.
Eur J Pharm Biopharm ; 138: 75-91, 2019 May.
Article in English | MEDLINE | ID: mdl-29678735

ABSTRACT

Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.


Subject(s)
Anti-HIV Agents/administration & dosage , Anti-HIV Agents/chemistry , HIV Infections/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Animals , Drug Combinations , Drug Delivery Systems/methods , Drug Therapy, Combination/methods , HIV-1/drug effects , Humans
17.
J Pharm Sci ; 107(12): 3153-3162, 2018 12.
Article in English | MEDLINE | ID: mdl-30121315

ABSTRACT

Drug-combination nanoparticles (DcNPs) administered subcutaneously represent a potential long-acting lymphatic-targeting treatment for HIV infection. The DcNP containing lopinavir (LPV)-ritonavir (RTV)-tenofovir (TFV), Targeted-Long-Acting-Antiretroviral-Therapy product candidate 101 (TLC-ART 101), has shown to provide long-acting lymphocyte-targeting performance in nonhuman primates. To extend the TLC-ART platform, we replaced TLC-ART 101 LPV with second-generation protease inhibitor, atazanavir (ATV). Pharmacokinetics of the ATV-RTV-TFV DcNP was assessed in macaques, in comparison to the equivalent free drug formulation and to the TLC-ART 101. After single subcutaneous administration of the DcNP formulation, ATV, RTV, and TFV concentrations were sustained in plasma for up to 14 days, and in peripheral blood mononuclear cells for 8 to 14 days, compared with 1 to 2 days in those macaques treated with free drug combination. By 1 week, lymph node mononuclear cells showed significant levels for all 3 drugs from DcNPs, whereas the free controls were undetectable. Compared with TLC-ART 101, the ATV-RTV-TFV DcNP exhibited similar lymphocyte-targeted long-acting features for all 3 drugs and similar pharmacokinetics for RTV and TFV, whereas some pharmacokinetic differences were observed for ATV versus LPV. The present study demonstrated the flexibility of the TLC-ART's DcNP platform to include different antiretroviral combinations that produce targeted long-acting effects on both plasma and cells.


Subject(s)
Anti-HIV Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , Delayed-Action Preparations/chemistry , Drug Delivery Systems , Ritonavir/administration & dosage , Tenofovir/administration & dosage , Animals , Anti-HIV Agents/blood , Anti-HIV Agents/pharmacokinetics , Atazanavir Sulfate/blood , Atazanavir Sulfate/pharmacokinetics , Cells, Cultured , Drug Combinations , HIV Infections/drug therapy , Humans , Leukocytes, Mononuclear/metabolism , Lipids/chemistry , Lymphocytes/metabolism , Macaca nemestrina , Male , Nanoparticles/chemistry , Ritonavir/blood , Ritonavir/pharmacokinetics , Tenofovir/blood , Tenofovir/pharmacokinetics
18.
AIDS ; 32(17): 2463-2467, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30102655

ABSTRACT

OBJECTIVE: To characterize a drug-combination nanoparticle (DcNP) containing water-insoluble lopinavir (LPV) and efavirenz (EFV), and water-soluble tenofovir (TFV), for its potential as a long-acting combination HIV treatment. DESIGN: Three HIV drugs (LPV, EFV, TFV) with well established efficacy and safety were coformulated into a single DcNP suspension. Two macaques were administered one subcutaneous injection and drug concentrations in plasma and mononuclear cells (in peripheral blood and lymph nodes) were analyzed over 2 weeks. Pharmacokinetic parameters and cell-to-plasma relationships of LPV, EFV, and TFV were determined. RESULTS: This three-in-one nanoformulation provided extended concentrations of all drugs in lymph node cells that were 57- to 228-fold higher than those in plasma. Levels of all three drugs in peripheral blood mononuclear cells persisted for 2 weeks at levels equal to or higher than those in plasma. CONCLUSION: With long-acting characteristics and higher drug penetration/persistence in cells, this three-in-one DcNP may enhance therapeutic efficacy of these well studied HIV drugs due to colocalization and targeting of this three-drug combination to HIV host cells.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Antiviral Agents/pharmacokinetics , Benzoxazines/pharmacokinetics , Lopinavir/pharmacokinetics , Nanoparticles/administration & dosage , Suspensions/pharmacokinetics , Tenofovir/pharmacokinetics , Alkynes , Animals , Anti-HIV Agents/administration & dosage , Antiviral Agents/administration & dosage , Benzoxazines/administration & dosage , Blood Cells/chemistry , Cyclopropanes , Delayed-Action Preparations , Drug Combinations , Injections, Subcutaneous , Lopinavir/administration & dosage , Macaca , Male , Plasma/chemistry , Suspensions/administration & dosage , Tenofovir/administration & dosage
19.
J Pharm Sci ; 107(7): 1787-1790, 2018 07.
Article in English | MEDLINE | ID: mdl-29548975

ABSTRACT

Daily oral antiretroviral therapy regimens produce limited drug exposure in tissues where residual HIV persists and suffer from poor patient adherence and disparate drug kinetics, which all negatively impact outcomes. To address this, we developed a tissue- and cell-targeted long-acting 4-in-1 nanosuspension composed of lopinavir (LPV), ritonavir, tenofovir (TFV), and lamivudine (3TC). In 4 macaques dosed subcutaneously, drug levels over 5 weeks in plasma, lymph node mononuclear cells (LNMCs), and peripheral blood mononuclear cells (PBMCs) were analyzed by liquid chromatography-tandem mass spectrometry. Plasma and PBMC levels of the active drugs (LPV, TFV, and 3TC) were sustained for 5 weeks; PBMC exposures to LPV, ritonavir, and 3TC were 12-, 16-, 42-fold higher than those in plasma. Apparent T1/2z of LPV, TFV, and 3TC were 219.1, 63.1, and 136.3 h in plasma; 1045.7, 105.9, and 127.7 h in PBMCs. At day 8, LPV, TFV, and 3TC levels in LNMCs were 4.1-, 5.0-, and 1.9-fold higher than in those in PBMCs and much higher than in plasma. Therefore, 1 dose of a 4-drug nanosuspension exhibited persistent drug levels in LNMCs, PBMCs, and plasma for 5 weeks. With interspecies scaling and dose adjustment, this 4-in-1 HIV drug-combination could be a long-acting treatment with the potential to target residual virus in tissues and improve patient adherence.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Delivery Systems , Lamivudine/administration & dosage , Lopinavir/administration & dosage , Ritonavir/administration & dosage , Tenofovir/administration & dosage , Animals , Anti-HIV Agents/blood , Anti-HIV Agents/pharmacokinetics , Drug Carriers/chemistry , Drug Therapy, Combination , HIV Infections/drug therapy , Injections, Subcutaneous , Lamivudine/blood , Lamivudine/pharmacokinetics , Leukocytes, Mononuclear/metabolism , Lopinavir/blood , Lopinavir/pharmacokinetics , Lymph Nodes/metabolism , Macaca nemestrina , Male , Nanoparticles/chemistry , Ritonavir/blood , Ritonavir/pharmacokinetics , Tenofovir/blood , Tenofovir/pharmacokinetics
20.
J Control Release ; 275: 229-241, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29432823

ABSTRACT

Existing oral antiretroviral (ARV) agents have been shown in human studies to exhibit limited lymph node penetration and lymphatic drug insufficiency. As lymph nodes are a reservoir of HIV, it is critical to deliver and sustain effective levels of ARV combinations in these tissues. To overcome lymph node drug insufficiency of oral combination ARV therapy (cART), we developed and reported a long-acting and lymphocyte-targeting injectable that contains three ARVs-hydrophobic lopinavir (LPV) and ritonavir (RTV), and hydrophilic tenofovir (TFV)-stabilized by lipid excipients in a nanosuspension. A single subcutaneous (SC) injection of this first-generation formulation of drug combination nanoparticles (DcNPs), named TLC-ART101, provided persistent ARV levels in macaque lymph node mononuclear cells (LNMCs) for at least 1 week, and in peripheral blood mononuclear cells (PBMCs) and plasma for at least 2 weeks, demonstrating long-acting pharmacokinetics for all three drugs. In addition, the lymphocyte-targeting properties of this formulation were demonstrated by the consistently higher intracellular drug concentrations in LNMCs and PBMCs versus those in plasma. To provide insights into the complex mechanisms of absorption and disposition of TLC-ART101, we constructed novel mechanism-based pharmacokinetic (MBPK) models. Based upon plasma PK data obtained after single administration of TLC-ART101 (DcNPs) and a solution formulation of free triple-ARVs, the models feature uptake from the SC injection site that respectively routes free and nanoparticle-associated ARVs via the blood vasculature and lymphatics, and their eventual distribution into and clearance from the systemic circulation. The models provided simultaneous description of the complex long-acting plasma and lymphatic PK profiles for all three ARVs in TLC-ART101. The long-acting PK characteristics of the three drugs in TLC-ART101 were likely due to a combination of mechanisms including: (1) DcNPs undergoing preferential lymphatic uptake from the subcutaneous space, (2) retention in nodes during lymphatic first-pass, (3) subsequent slow release of ARVs into blood circulation, and (4) limited extravasation of DcNP-associated ARVs that resulted in longer persistence in the circulation.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Anti-Retroviral Agents/pharmacokinetics , Lopinavir/pharmacokinetics , Models, Biological , Nanoparticles , Ritonavir/pharmacokinetics , Tenofovir/pharmacokinetics , Animals , Anti-HIV Agents/blood , Anti-Retroviral Agents/blood , Delayed-Action Preparations/pharmacokinetics , Drug Combinations , Lopinavir/blood , Macaca nemestrina , Male , Ritonavir/blood , Tenofovir/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...